38 research outputs found

    'Playing robot': an interactive sound installation in human-robot interaction design for new media art

    Get PDF
    In this study artistic human-robot interaction design is in- troduced as a means for scientific research and artistic inves- tigations. It serves as a methodology for situated cognition integrating empirical methodology and computational mod- eling, and is exemplified by the installation playing robot. Its artistic purpose is to aid to create and explore robots as a new medium for art and entertainment. We discuss the use of finite state machines to organize robots’ behavioral reac- tions to sensor data, and give a brief outlook on structured observation as a potential method for data collection

    Embodied Cognitive Science of Music. Modeling Experience and Behavior in Musical Contexts

    Get PDF
    Recently, the role of corporeal interaction has gained wide recognition within cognitive musicology. This thesis reviews evidence from different directions in music research supporting the importance of body-based processes for the understanding of music-related experience and behaviour. Stressing the synthetic focus of cognitive science, cognitive science of music is discussed as a modeling approach that takes these processes into account and may theoretically be embedded within the theory of dynamic systems. In particular, arguments are presented for the use of robotic devices as tools for the investigation of processes underlying human music-related capabilities (musical robotics)

    Solar irradiance nowcasting based on a network of all sky imagers: the value of high-resolution data on variability information

    Get PDF
    The transition to a fossil-free energy system requires rapid installation of photovoltaic (PV) systems. For Germany, the government is targeting an installed PV capacity of 215 Gigawatt by 2030 (70 GW by 2023). This target is associated with an increased installation rate of 22 gigawatts PV per year (around three times compared to the 2021 rate). In urban areas, the majority of systems will be installed on rooftops connected to the low-voltage grid. It is therefore likely, that the majority of suitable rooftops will be equipped with PV systems in the next 10 years. In parallel, significant changes in load patterns (e.g. e-mobility, heat pumps) and the integration of battery storages can be expected. The efficient integration of the additional PV systems into the electrical grid also requires a detailed understanding of the generation profiles at different levels from the household to the transformer. Therefore, the impact of very-short-term solar irradiance variability on ramp rates and balancing effects should be investigated for scenarios with decentralized, but denser PV generation than today. Since this variability is mainly caused by small scale cloud dynamics, high resolution information on temporal and spatial cloud cover and irradiance distribution is needed. In northwestern Germany, DLR has installed and is operating Eye2Sky, a dense network of all-sky imagers (ASI). At 30 different locations, high-resolution fisheye images of the sky are taken every 30 seconds. At 10 locations, the images are complemented by radiation and meteorological measurements. The Eye2Sky network covers about 100 km x 100 km centered at the city of Oldenburg. It has a low ASI density in rural areas and a high density in city of Oldenburg, thus providing an almost complete coverage of the city. Eye2Sky is used to study solar irradiance variability in the city of Oldenburg at a high spatial (50 meters) and temporal (30 seconds) resolution. This enables simulations of single rooftop PV systems. Compared to state-of-the art radiation data sources like satellite images or numerical weather models (NWP), the camera information in Eye2Sky resolves cloud details that cause solar irradiance fluctuations on small scales down to household level. In this work, we would like to present a solar irradiance nowcasting validation from the ASI network in Oldenburg and its comparison with methods based on satellite (MSG) as well as NWP (ICON-D2) data. Emphasis will be made on the ability of the different methods to reproduce the spatio-temporal variability under different cloud condition

    Solar irradiance nowcasting based on a network of all sky imagers: the value of high-resolution data on variability information

    Get PDF
    The transition to a fossil-free energy system requires rapid installation of photovoltaic (PV) systems. For Germany, the government is targeting an installed PV capacity of 215 Gigawatt by 2030 (70 GW by 2023). This target is associated with an increased installation rate of 22 gigawatts PV per year (around three times compared to the 2021 rate). In urban areas, the majority of systems will be installed on rooftops connected to the low-voltage grid. It is therefore likely, that the majority of suitable rooftops will be equipped with PV systems in the next 10 years. In parallel, significant changes in load patterns (e.g. e-mobility, heat pumps) and the integration of battery storages can be expected. The efficient integration of the additional PV systems into the electrical grid also requires a detailed understanding of the generation profiles at different levels from the household to the transformer. Therefore, the impact of very-short-term solar irradiance variability on ramp rates and balancing effects should be investigated for scenarios with decentralized, but denser PV generation than today. Since this variability is mainly caused by small scale cloud dynamics, high resolution information on temporal and spatial cloud cover and irradiance distribution is needed. In northwestern Germany, DLR has installed and is operating Eye2Sky, a dense network of all-sky imagers (ASI). At 30 different locations, high-resolution fisheye images of the sky are taken every 30 seconds. At 10 locations, the images are complemented by radiation and meteorological measurements. The Eye2Sky network covers about 100 km x 100 km centered at the city of Oldenburg. It has a low ASI density in rural areas and a high density in city of Oldenburg, thus providing an almost complete coverage of the city. Eye2Sky is used to study solar irradiance variability in the city of Oldenburg at a high spatial (50 meters) and temporal (30 seconds) resolution. This enables simulations of single rooftop PV systems. Compared to state-of-the art radiation data sources like satellite images or numerical weather models (NWP), the camera information in Eye2Sky resolves cloud details that cause solar irradiance fluctuations on small scales down to household level. In this work, we would like to present a solar irradiance nowcasting validation from the ASI network in Oldenburg and its comparison with methods based on satellite (MSG) as well as NWP (ICON-D2) data. Emphasis will be made on the ability of the different methods to reproduce the spatio-temporal variability under different cloud condition

    Considerations Concerning a Methodology for Musical Robotics and Human-Robot Interaction

    No full text
    Robot technology is increasingly employed in artistic (musical) applications and as modeling tool for the investigation of general cognitive abilities and music related behavior in particular. Apart from the specifications of required system behavior and technological aspects of system design/implementation, problems occur concerning the evaluation of the systems. In recent approaches, techniques such as collecting informal reports, perceptual tests, video-based observational studies, or rating scales have been employed. Questions arise, however, as to the reliability and validity of these measures, and the lack of standardization diminishes the comparability of different studies. To attack these problems, we regard the paradigm of systematic observation as one suitable approach to study musical human-robot behavior. In a pilot study, observers were asked to assign labels to sequences of robot movements exhibiting features derived from expressive movements of musicians. Taking into account the implications of these remarks for the design of investigations, the generality of results may still be limited, e.g. by the choice of participants. As long as results of this kind cannot be integrated into a coherent theoretical framework, these considerations may run counter to recent attempts to use musical behavior as a testing field for principles underlying more general cognitive abilities/processes

    playing robot: An Interactive Sound Installation in Human-Robot Interaction Design for New Media Art

    No full text
    ABSTRACT In this study artistic human-robot interaction design is introduced as a means for scientific research and artistic investigations. It serves as a methodology for situated cognition integrating empirical methodology and computational modeling, and is exemplified by the installation playing robot. Its artistic purpose is to aid to create and explore robots as a new medium for art and entertainment. We discuss the use of finite state machines to organize robots' behavioral reactions to sensor data, and give a brief outlook on structured observation as a potential method for data collection

    Photochemistry of iron in aquatic environments

    No full text
    corecore